NONSINGULAR ORIGIN OF THE UNIVERSE AND ITS PRESENT VACUUM ENERGY DENSITY

Author:

GUENDELMAN E. I.1

Affiliation:

1. Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel

Abstract

We consider a nonsingular origin for the universe starting from an Einstein static universe, the so-called "emergent universe" scenario, in the framework of a theory which uses two volume elements [Formula: see text] and Φd4x, where Φ is a metric independent density, used as an additional measure of integration. Also curvature, curvature square terms and for scale invariance a dilaton field ϕ are considered in the action. The first-order formalism is applied. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking of scale invariance. After spontaneous symmetry breaking of scale invariance it is found that a nontrivial potential for the dilaton is generated. In the Einstein frame we also add a cosmological term that parametrizes the zero point fluctuations. The resulting effective potential for the dilaton contains two flat regions, for ϕ → ∞ relevant for the nonsingular origin of the universe, followed by an inflationary phase and ϕ → - ∞, describing our present universe. The dynamics of the scalar field becomes nonlinear and these nonlinearities are instrumental in the stability of some of the emergent universe solutions, which exists for a parameter range of values of the vacuum energy in ϕ → - ∞, which must be positive but not very big, avoiding the extreme fine tuning required to keep the vacuum energy density of the present universe small. Zero vacuum energy density for the present universe defines the threshold for the creation of the universe.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of dark matter based on space physics;IOP Conference Series: Earth and Environmental Science;2021-02-01

2. Emergent universe by tunneling in a Jordan-Brans-Dicke theory;The European Physical Journal C;2019-04

3. Small dark energy and stable vacuum from Dilaton–Gauss–Bonnet coupling in TMT;The European Physical Journal C;2017-04

4. The nucleation of false vacuum bubbles with compact geometries;International Journal of Modern Physics A;2015-07-08

5. Scale symmetry breaking from total derivative densities and the cosmological constant problem;Physics Letters B;2014-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3