ANOMALIES IN WARD IDENTITIES FOR THREE-POINT FUNCTIONS REVISITED

Author:

BATTISTEL O. A.1,BATTISTEL O. L.2

Affiliation:

1. Physics Department, Universidade Federal de Santa Maria, C.P. 5093, 97119-900, Santa Maria, RS, Brazil

2. Exact Science Area, Centro Universitário Franciscano, Rua dos Andradas, 1614, 97010-032, Santa Maria, RS, Brazil

Abstract

A general calculational method is applied to investigate symmetry relations among divergent amplitudes in a free fermion model. A very traditional work on this subject is revisited. A systematic study of one, two and three-point functions associated to scalar, pseudoscalar, vector and axial-vector densities is performed. The divergent content of the amplitudes are left in terms of five basic objects (external momentum independent). No specific assumptions about a regulator is adopted in the calculations. All ambiguities and symmetry violating terms are shown to be associated with only three combinations of the basic divergent objects. Our final results can be mapped in the corresponding Dimensional Regularization calculations (in cases where this technique could be applied) or in those of Gertsein and Jackiw which we will show in detail. The results emerging from our general approach allow us to extract, in a natural way, a set of reasonable conditions (e.g. crucial for QED consistency) that could lead us to obtain all Ward Identities satisfied. Consequently, we conclude that the traditional approach used to justify the famous triangular anomalies in perturbative calculations could be questionable. An alternative point of view, dismissed of ambiguities, which lead to a correct description of the associated phenomenology, is pointed out.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3