Consistency and universality in odd and even dimensional space–time QFT perturbative calculations

Author:

Battistel O. A.1,Dallabona G.2

Affiliation:

1. Departamento de Física, Universidade Federal de Santa Maria, 97119-900 Santa Maria, RS, Brazil

2. Departamento de Ciências Exatas, Universidade Federal de Lavras, Caixa Postal 37, 37200-000, Lavras, MG, Brazil

Abstract

The questions related to the consistent interpretation of QFT perturbative amplitudes are considered in light of a novel procedure, alternative to the traditional ones based on regularization prescriptions. A detailed discussion about the aspects associated to the space–time dimension is performed. For this purpose, it is considered a simple model having a fermionic vector current, coupled to a vector field, as well as a fermionic scalar current, coupled to a scalar field, both of them composed by different species of massive fermions. The referred currents are related in a precise way, which is reflected in the Ward identities for the perturbative physical amplitudes. The double vector two-point fermionic function, related to the vacuum polarization tensor of QED, as well as the amplitudes related to such quantity through relations among Green functions are explicit evaluated in space–time dimensions d = 2, 3, 4, 5 and 6. In the adopted procedure the perturbative amplitudes are not modified in intermediary steps of the calculations, as occurs in regularization procedures. Divergent Feynman integrals are not really solved. They appear only in standard objects, conveniently defined, where no physical parameter is present. Only very general properties for such quantities are assumed. For the finite parts, a set of functions is introduced which allows universal forms for the results. We show that scale independent, ambiguity free amplitudes are automatically obtained in a regularization independent way. As a consequence, interesting and, in certain way, surprising aspects are revealed in a clear and transparent way when the Ward identities and low-energy limits are verified for the simple amplitudes considered in the presently reported investigation. The obtained results suggest that the procedure can be considered as an advantageous tool to handle with the problem of divergences in perturbative solutions of QFT's, relative to the traditional regularization techniques, since the obtained results are so consistent as desirable and there are no limitations of applicability. In particular, the method can be applied in odd and even space–time dimensions having extra dimensions, which is not possible within the context of traditional regularization.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3