Affiliation:
1. Physics Department, Yazd University, 89195-741, Yazd, Iran
Abstract
In this paper, we construct the generalized parton distribution (GPD) in terms of the kinematical variables [Formula: see text], [Formula: see text], [Formula: see text], using the double distribution model. By employing these functions, we could extract some quantities which makes it possible to gain a three-dimensional insight into the nucleon structure function at the parton level. The main objective of GPDs is to combine and generalize the concepts of ordinary parton distributions and form factors. They also provide an exclusive framework to describe the nucleons in terms of quarks and gluons. Here, we first calculate, in the Double Distribution model, the GPD based on the usual parton distributions arising from the GRV and CTEQ phenomenological models. Obtaining quarks and gluons angular momenta from the GPD, we would be able to calculate the scattering observables which are related to spin asymmetries of the produced quarkonium. These quantities are represented by [Formula: see text] and [Formula: see text]. We also calculate the Pauli and Dirac form factors in deeply virtual Compton scattering. Finally, in order to compare our results with the existing experimental data, we use the difference of the polarized cross-section for an initial longitudinal leptonic beam and unpolarized target particles [Formula: see text]. In all cases, our obtained results are in good agreement with the available experimental data.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics