Affiliation:
1. Institut de Physique Nucléaire d’Orsay, 15 Rue Georges Clemenceau, Orsay 91400, France
Abstract
Generalized Parton Distributions (GPDs) are nowadays the object of an intense effort of research, in the perspective of understanding nucleon structure. They describe the correlations between the longitudinal momentum and the transverse spatial position of the partons inside the nucleon and they can give access to the contribution of the orbital momentum of the quarks to the nucleon spin. Deeply Virtual Compton scattering (DVCS), the electroproduction on the nucleon, at the quark level, of a real photon, is the process more directly interpretable in terms of GPDs of the nucleon. Depending on the target nucleon (proton or neutron) and on the DVCS observable extracted (cross-sections, target- or beam-spin asymmetries, etc.), different sensitivity to the various GPDs for each quark flavor can be exploited. This article is focused on recent promising results, obtained at Jefferson Lab, on cross-sections and asymmetries for DVCS, and their link to GPDs. These data open the way to a “tomographic” representation of the structure of the nucleon, allowing the extraction of transverse-space densities of the quarks at fixed longitudinal momentum. The extensive experimental program to measure GPDs at Jefferson Lab with the 12 GeV-upgraded electron accelerator and the complementary detectors that will be housed in three experimental Halls (A, B and C), will also be presented.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献