Statistical inference and string theory

Author:

Heckman Jonathan J.12

Affiliation:

1. Department of Physics, University of North Carolina, Chapel Hill, NC 27599, USA

2. Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA

Abstract

In this paper, we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an [Formula: see text]-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a [Formula: see text]-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a nonlinear sigma model in [Formula: see text] dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring compactification. Finally, we present some brief speculative remarks on applications to the AdS/CFT correspondence and Lorentzian signature space–times.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Infinite distances in multicritical CFTs and higher-spin holography;Journal of High Energy Physics;2023-03-13

2. Misanthropic entropy and renormalization as a communication channel;International Journal of Modern Physics A;2022-06-10

3. Disorder averaging and its UV discontents;Physical Review D;2022-04-25

4. Space from entanglement: An information-geometric perspective;International Journal of Geometric Methods in Modern Physics;2021-11-09

5. The Compact Landscape;The Calabi–Yau Landscape;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3