Affiliation:
1. Department of Physics, Princeton University, Princeton, NJ 08544 USA
Abstract
The task of parametric model selection is cast in terms of a statistical mechanics on the space of probability distributions. Using the techniques of low-temperature expansions, I arrive at a systematic series for the Bayesian posterior probability of a model family that significantly extends known results in the literature. In particular, I arrive at a precise understanding of how Occam's razor, the principle that simpler models should be preferred until the data justify more complex models, is automatically embodied by probability theory. These results require a measure on the space of model parameters and I derive and discuss an interpretation of Jeffreys' prior distribution as a uniform prior over the distributions indexed by a family. Finally, I derive a theoretical index of the complexity of a parametric family relative to some true distribution that I call the razor of the model. The form of the razor immediately suggests several interesting questions in the theory of learning that can be studied using the techniques of statistical mechanics.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
142 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献