The reduction theorem for relatively maximal subgroups

Author:

Guo Wenbin12,Revin Danila O.3,Vdovin Evgeny P.3

Affiliation:

1. School of Science, Hainan University, Haikou, Hainan 570228, P. R. China

2. Department of Mathematics, University of Science, and Technology of China Hefei 230026, P. R. China

3. Sobolev Institute of Mathematics SB RAS, Novosibirsk State University, Novosibirsk 630090, Russia

Abstract

Let [Formula: see text] be a class of finite groups closed under taking subgroups, homomorphic images and extensions. It is known that if [Formula: see text] is a normal subgroup of a finite group [Formula: see text] then the image of an [Formula: see text]-maximal subgroup [Formula: see text] of [Formula: see text] in [Formula: see text] is not, in general, [Formula: see text]-maximal in [Formula: see text]. We say that the reduction [Formula: see text]-theorem holds for a finite group [Formula: see text] if, for every finite group [Formula: see text] that is an extension of [Formula: see text] (i.e. contains [Formula: see text] as a normal subgroup), the number of conjugacy classes of [Formula: see text]-maximal subgroups in [Formula: see text] and [Formula: see text] is the same. The reduction [Formula: see text]-theorem for [Formula: see text] implies that [Formula: see text] is [Formula: see text]-maximal in [Formula: see text] for every extension [Formula: see text] of [Formula: see text] and every [Formula: see text]-maximal subgroup [Formula: see text] of [Formula: see text]. In this paper, we prove that the reduction [Formula: see text]-theorem holds for [Formula: see text] if and only if all [Formula: see text]-maximal subgroups of [Formula: see text] are conjugate in [Formula: see text] and classify the finite groups with this property in terms of composition factors.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3