Affiliation:
1. Institut für Mathematik, Universität Augsburg, Universitätsstr. 14, 86159 Augsburg, Germany
Abstract
In this paper we deal with a class of varieties of bounded mean curvature in the viscosity sense that has the remarkable property to contain the blow up sets of all sequences of varifolds whose mean curvatures are uniformly bounded and whose boundaries are uniformly bounded on compact sets. We investigate the second-order properties of these varieties, obtaining results that are new also in the varifold’s setting. In particular we prove that the generalized normal bundle of these varieties satisfies a natural Lusin (N) condition, a property that allows to prove a Coarea-type formula for their generalized Gauss map. Then we use this formula to extend a sharp geometric inequality of Almgren and the associated soap bubble theorem. As a consequence of the geometric inequality we obtain sufficient conditions to conclude that the area-blow-up set is empty for sequences of varifolds whose first variation is controlled.
Publisher
World Scientific Pub Co Pte Lt
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献