Affiliation:
1. Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Universitá degli Studi dell’Aquila , 67100 L’Aquila , Italy
Abstract
Abstract
Given $ n \geq 2 $ and $ k \in \{2, \ldots , n\} $, we study the asymptotic behaviour of sequences of bounded $C^{2}$-domains, whose $ k $-th mean curvature functions converge in $ L^{1} $-norm to a constant. Under certain curvature assumptions, we prove that finite unions of mutually tangent balls are the only possible limits with respect to convergence in volume and perimeter. The key novelty of our statement lies in the fact that we do not assume bounds on the exterior or interior touching balls.
Publisher
Oxford University Press (OUP)
Reference41 articles.
1. Functions of bounded variation and free discontinuity problems;Ambrosio,2000
2. Uniqueness theorems for surfaces in the large. V;Aleksandrov;Vestnik Leningrad. Univ,1958
3. A characteristic property of spheres;Alexandrov;Ann. Mat. Pura Appl.,1962
4. On the first variation of a varifold;Allard;Ann. of Math.,1972
5. Multiple solutions of $\text{H}$-systems and Rellich’s conjecture;Brezis;Comm. Pure Appl. Math.,1984