Graphene Quantum Dots-Coated Bismuth Nanoparticles for Improved CT Imaging and Photothermal Performance

Author:

Badrigilan Samireh12,Shaabani Behrouz3,Aghaji Nahideh Ghareh4,Mesbahi Asghar12

Affiliation:

1. Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2. Department of Medical Physics, Faculty of Medical, Tabriz University of Medical Sciences, Tabriz, Iran

3. Department of Inorganic Chemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran

4. Department of Radiology, Faculty of Paramedical, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

By integrating high-performance CT imaging and photothermal therapy (PTT) into one nanoprobe, an effective theranostic can be achieved for clinical cancer treatment. In this study, the graphene quantum dots (GQDs)-coated bismuth (Bi) nanoparticle (NP) as a theranostic nanoprobe is synthesized and its capabilities for computed tomography (CT) imaging and PTT are investigated. Such nanotheranostic exhibits good physiological dispersity with satisfactory blood compatibility and cytotoxicity. Most importantly, the GQDs-Bi NPs offer strong and steady absorbance profile in NIR region with excellent photostability, which can remarkably convert photo-to-thermal with the photothermal efficiency of 30.0%. Thanks to the powerful PTT effect, co-delivery of GQDs-Bi NPs/NIR laser can effectively induce HeLa cells death in vitro. Cooperatively, NPs hold X-ray attenuation coefficient for high-contrast CT imaging with the corresponding CT improvement efficacy as high as 32.7[Formula: see text]HU[Formula: see text]mg[Formula: see text]. The obtained results highlight the potential of GQDs-Bi NPs as a successful theranostic nanoagent for CT imaging and cancer photothermal therapy.

Funder

Drug Applied Research Center, Tabriz University of Medical Sciences

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Computer Science Applications,Condensed Matter Physics,General Materials Science,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3