Affiliation:
1. Dipartimento Di Matematica, Universita' Degli Studi Di Bari, Bari, via Orabona 4, 70125, Italy
Abstract
In this paper, we consider associative P.I. algebras over a field F of characteristic 0, graded by a finite group G. More precisely, we define the G-graded Gelfand–Kirillov dimension of a G-graded P.I. algebra. We find a basis of the relatively free graded algebras of the upper triangular matrices UTn(F) and UTn(E), with entries in F and in the infinite-dimensional Grassmann algebra, respectively. As a consequence, we compute their graded Gelfand–Kirillov dimension with respect to the natural gradings defined over these algebras. We obtain similar results for the upper triangular matrix algebra UTa, b(E) = UTa+b(E)∩Ma, b(E) with respect to its natural ℤa+b × ℤ2-grading. Finally, we compute the ℤn-graded Gelfand–Kirillov dimension of Mn(F) in some particular cases and with different methods.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献