Abstract
AbstractLet L be an n-dimensional null-filiform Leibniz algebra over a field K. We consider a finite dimensional cocommutative Hopf algebra or a Taft algebra H and we describe the H-actions on L. Moreover we provide the set of H-identities and the description of the Sn-module structure of the relatively free algebra of L.
Funder
Università degli Studi di Bari Aldo Moro
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Abanina, L.E., Mishchenko, S.P.: The variety of Leibniz algebras defined by the identity x(y(zt)) ≡ 0. Serdica Math. J. 29, 291–300 (2003)
2. Adashev, J., Camacho, L.M., Omirov, B.A.: Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras. J. Algebra 479, 461–486 (2017)
3. Aljadeff, E., Giambruno, A.: Multialternating graded polynomials and growth of polynomial identities. Proc. Amer. Math Soc. 141(9), 3055–3065 (2013)
4. Aljadeff, E., Giambruno, A., La Mattina, D.: Graded polynomial identities and exponential growth. J. Reine Angew. Math. 650, 83–100 (2011)
5. Ayupov, S. h., Omirov, B.A.: On some classes of nilpotent Leibniz algebras. Siberian Math. J. 42(1), 15–24 (2001)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献