INTERSECTION GRAPH OF SUBMODULES OF A MODULE

Author:

AKBARI S.12,TAVALLAEE H. A.3,GHEZELAHMAD S. KHALASHI3

Affiliation:

1. Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

2. School of Mathematics, Institute for Research in Fundamental Science (IPM), P. O. Box 19395-5746, Tehran, Iran

3. School of Mathematics, Iran University of Science and Technology, Tehran, Iran

Abstract

Let R be a ring with identity and M be a unitary left R-module. The intersection graph of an R-moduleM, denoted by G(M), is defined to be the undirected simple graph whose vertices are in one to one correspondence with all non-trivial submodules of M and two distinct vertices are adjacent if and only if the corresponding submodules of M have nonzero intersection. We investigate the interplay between the module-theoretic properties of M and the graph-theoretic properties of G(M). We characterize all modules for which the intersection graph of submodules is connected. Also the diameter and the girth of G(M) are determined. We study the clique number and the chromatic number of G(M). Among other results, it is shown that if G(M) is a bipartite graph, then G(M) is a star graph.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

Reference6 articles.

1. J. Bosak, Theory of Graphs and Application (Academic Press, New York, 1964) pp. 119–125.

2. Intersection graphs of ideals of rings

3. The graph of subgroups of a finite group

4. Lessons on Rings, Modules and Multiplicities

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. g-Small Intersection Graph of a Module;Baghdad Science Journal;2024-08-01

2. The principal small intersection graph of a commutative ring;Revista de la Unión Matemática Argentina;2024-05-19

3. On definition of group homomorphism graph;Discrete Mathematics, Algorithms and Applications;2024-01-10

4. The Clique Number of the Intersection Graph of a Finite Group;Bulletin of the Iranian Mathematical Society;2023-10

5. Intersection graph of idealizations;Collectanea Mathematica;2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3