RELATIVE ROTA–BAXTER OPERATORS AND TRIDENDRIFORM ALGEBRAS

Author:

BAI CHENGMING1,GUO LI23,NI XIANG4

Affiliation:

1. Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, P. R. China

2. School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

3. Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102, USA

4. Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

A relative Rota–Baxter operator is a relative generalization of a Rota–Baxter operator on an associative algebra. In the Lie algebra context, it is called an [Formula: see text]-operator, originated from the operator form of the classical Yang–Baxter equation. We generalize the well-known construction of dendriform and tridendriform algebras from Rota–Baxter algebras to a construction from relative Rota–Baxter operators. In fact we give two such generalizations, on the domain and range of the operator respectively. We show that each of these generalized constructions recovers all dendriform and tridendriform algebras. Furthermore the construction on the range induces bijections between certain equivalence classes of invertible relative Rota–Baxter operators and tridendriform algebras.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Reference26 articles.

1. M. Aguiar, Hopf Algebras, Lecture Notes in Pure and Applied Mathematics 237 (Marcel Dekker, 2004) pp. 1–33.

2. Quadri-algebras

3. Double constructions of Frobenius algebras, Connes cocycles and their duality

4. Splitting of Operations, Manin Products, and Rota–Baxter Operators

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anti-dendriform algebras, new splitting of operations and Novikov-type algebras;Journal of Algebraic Combinatorics;2024-02-26

2. Bimodules over Relative Rota-Baxter Algebras and Cohomologies;Algebras and Representation Theory;2022-08-22

3. Rota–Baxter (Co)algebra Equation Systems and Rota–Baxter Hopf Algebras;Mathematics;2022-01-28

4. Admissible Poisson bialgebras;International Journal of Mathematics;2021-11-03

5. Compatible O-operators on bimodules over associative algebras;Journal of Algebra;2019-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3