Admissible Poisson bialgebras

Author:

Liang Jinting1,Liu Jiefeng2,Bai Chengming3ORCID

Affiliation:

1. Department of Mathematics, Michigan State University, East Lansing, MI 48823, USA

2. School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P. R. China

3. Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, P. R. China

Abstract

An admissible Poisson algebra (or briefly, an adm-Poisson algebra) gives an equivalent presentation with only one operation for a Poisson algebra. We establish a bialgebra theory for adm-Poisson algebras independently and systematically, including but beyond the corresponding results on Poisson bialgebras given in [27]. Explicitly, we introduce the notion of adm-Poisson bialgebras which are equivalent to Manin triples of adm-Poisson algebras as well as Poisson bialgebras. The direct correspondence between adm-Poisson bialgebras with one comultiplication and Poisson bialgebras with one cocommutative and one anti-cocommutative comultiplications generalizes and illustrates the polarization–depolarization process in the context of bialgebras. The study of a special class of adm-Poisson bialgebras which include the known coboundary Poisson bialgebras in [27] as a proper subclass in general, illustrating an advantage in terms of the presentation with one operation, leads to the introduction of adm-Poisson Yang–Baxter equation in an adm-Poisson algebra. It is an unexpected consequence that both the adm-Poisson Yang–Baxter equation and the associative Yang–Baxter equation have the same form and thus it motivates and simplifies the involved study from the study of the associative Yang–Baxter equation, which is another advantage in terms of the presentation with one operation. A skew-symmetric solution of adm-Poisson Yang–Baxter equation gives an adm-Poisson bialgebra. Finally, the notions of an [Formula: see text]-operator of an adm-Poisson algebra and a pre-adm-Poisson algebra are introduced to construct skew-symmetric solutions of adm-Poisson Yang–Baxter equation and hence adm-Poisson bialgebras. Note that a pre-adm-Poisson algebra gives an equivalent presentation for a pre-Poisson algebra introduced by Aguiar.

Funder

national natural science foundation of china

fundamental research funds for the central universities

nankai zhide foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3