Strongly prime ideals and strongly zero-dimensional rings

Author:

Gottlieb Christian1

Affiliation:

1. Department of Mathematics, University of Stockholm, SE-106 91 Stockholm, Sweden

Abstract

A prime ideal [Formula: see text] is said to be strongly prime if whenever [Formula: see text] contains an intersection of ideals, [Formula: see text] contains one of the ideals in the intersection. A commutative ring with this property for every prime ideal is called strongly zero-dimensional. Some equivalent conditions are given and it is proved that a zero-dimensional ring is strongly zero-dimensional if and only if the ring is quasi-semi-local. A ring is called strongly [Formula: see text]-regular if in each ideal [Formula: see text], there is an element [Formula: see text] such that [Formula: see text] for all [Formula: see text]. Connections between the concepts strongly zero-dimensional and strongly [Formula: see text]-regular are considered.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variations of primeness of ideals in rings of continuous functions;Journal of Algebra and Its Applications;2023-12-14

2. Noetherian-like properties and zero-dimensionality in some extensions of rings;Afrika Matematika;2023-06-30

3. Locally torsion-free modules;Journal of Algebra and Its Applications;2022-02-14

4. An extension of S-artinian rings and modules to a hereditary torsion theory setting;Communications in Algebra;2020-11-24

5. S-Artinian rings and finitely S-cogenerated rings;Journal of Algebra and Its Applications;2019-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3