Personalized Trajectory Privacy Protection Method Based on User-Requirement

Author:

Hu Zhaowei12,Yang Jing1,Zhang Jianpei1

Affiliation:

1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, P. R. China

2. College of Computer, Jilin Normal University, Siping 136000, P. R. China

Abstract

Trajectory data often provides useful information that can be utilized in real-life applications, such as traffic planning and location-based advertising. Because people’s trajectory information can result in serious personal privacy leakage, trajectory privacy protection methods are employed. However, existing methods assume and use the same privacy requirements for all trajectories, which affect privacy protection efficiency and data utilization. This paper proposes a trajectory privacy protection method based on user requirement. By dividing different time intervals, it sets different privacy protection parameters for different trajectories to provide more detailed privacy protection. The proposed method utilizes the divided time intervals and privacy protection requirements to form a privacy requirement matrix, to construct an anonymous trajectory equivalence class and undirected graph. Then, trajectories are processed to form anonymous sets. Euclidean distance is also replaced with Manhattan distance in calculating the distance of the trajectories, which would improve the privacy protection and data utility and narrow the gap between the theoretical privacy protection and the actual protective effects. Comparative experiments demonstrate that the proposed method outperforms other similar methods in regards to both privacy protection and data utilization.

Funder

the Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

Heilongjiang Province Science Foundation for Youths

Postdoctoral Foundation of Heilongjiang Province of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3