Affiliation:
1. School of Computer and Control Engineering, Yantai University, Yantai 264005, China
2. Department of Computer Science, Georgia State University, Atlanta 30303, GA, USA
Abstract
In spatiotemporal crowdsourcing applications, sensing data uploaded by participants usually contain spatiotemporal sensitive data. If application servers publish the unprocessed sensing data directly, it is easy to expose the privacy of participants. In addition, application servers usually adopt the static publishing mechanism, which is easy to produce problems such as poor timeliness and large information loss for spatiotemporal crowdsourcing applications. Therefore, this paper proposes a spatiotemporal privacy protection (STPP) method based on dynamic clustering methods to solve the privacy protection problem for crowd participants in spatiotemporal crowdsourcing systems. Firstly, the working principles of a dynamic privacy protection mechanism are introduced. Then, based on k-anonymity and l-diversity, the spatiotemporal sensitive data are anonymized. In addition, this paper designs the dynamic k-anonymity algorithm based on the previous anonymous results. Through extensive performance evaluation on real-world data, compared with existing methods, the proposed STPP algorithm could effectively solve the problem of poor timeliness and improve the privacy protection level while reducing the information loss of sensing data.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Information Systems
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献