ROBUST SUBSPACE CORRECTION METHODS FOR NEARLY SINGULAR SYSTEMS

Author:

LEE YOUNG-JU1,WU JINBIAO2,XU JINCHAO32,ZIKATANOV LUDMIL3

Affiliation:

1. Department of Mathematics, Rutgers, The State University of New Jersey, Hill Center, Piscataway, NJ 08854-8019, USA

2. Laboratory of Mathematics and Applied Mathematics, School of Mathematical Sciences, Peking University, Beijing 100871, China

3. Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Abstract

In this paper, we discuss convergence results for general (successive) subspace correction methods for solving nearly singular systems of equations. We provide parameter independent estimates under appropriate assumptions on the subspace solvers and space decompositions. The main assumption is that any component in the kernel of the singular part of the system can be decomposed into a sum of local (in each subspace) kernel components. This assumption also covers the case of "hidden" nearly singular behavior due to decreasing mesh size in the systems resulting from finite element discretizations of second order elliptic problems. To illustrate our abstract convergence framework, we analyze a multilevel method for the Neumann problem (H(grad) system), and also two-level methods for H(div) and H(curl) systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy-stable smoothed particles hydrodynamics for the incompressible single-phase and two-phase flows;SCIENTIA SINICA Mathematica;2024-09-01

2. An efficient flux‐variable approximation scheme for Darcy's flow;Numerical Methods for Partial Differential Equations;2024-06-10

3. hp-Multigrid Preconditioner for a Divergence-Conforming HDG Scheme for the Incompressible Flow Problems;Journal of Scientific Computing;2024-06-03

4. Estimation of Condition Number of Quasi-static Darwin Model;2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC);2024-06-02

5. Multigrid Solvers for the de Rham Complex with Optimal Complexity in Polynomial Degree;SIAM Journal on Scientific Computing;2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3