An efficient flux‐variable approximation scheme for Darcy's flow

Author:

Adhikari Rajan B.1,Kim Imbumn2,Lee Young Ju3,Sheen Dongwoo2ORCID

Affiliation:

1. Department of Mathematics Oklahoma State University Stillwater Oklahoma USA

2. Department of Mathematics Seoul National University Seoul Korea

3. Department of Mathematics Texas State University San Marcos Texas USA

Abstract

AbstractWe present an efficient numerical method to approximate the flux variable for the Darcy flow model. An important feature of our new method is that the approximate solution for the flux variable is obtained without approximating the pressure at all. To accomplish this, we introduce a user‐defined parameter delta, which is typically chosen to be small so that it minimizes the negative effect resulting from the absence of the pressure, such as inaccuracy in both the flux approximation and the mass conservation. The resulting algebraic system is of significantly smaller degrees of freedom, compared to the one from the mixed finite element methods or least‐squares methods. We also interpret the proposed method as a single step iterate of the augmented Lagrangian Uzawa applied to solve the mixed finite element in a special setting. Lastly, the pressure recovery from the flux variable is discussed and an optimal‐order error estimate for the method is obtained. Several examples are provided to verify the proposed theory and algorithm, some of which are from more realistic models such as SPE10.

Funder

National Science Foundation

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3