FRACTAL-BASED ANALYSIS OF THE VARIATIONS OF CUTTING FORCES ALONG DIFFERENT AXES IN END MILLING OPERATION

Author:

NAMAZI HAMIDREZA1ORCID,FARID ALI AKHAVAN2,CHANG TECK SENG3

Affiliation:

1. Department of Mechanical Engineering, School of Engineering, Monash University, Selangor, Malaysia

2. Department of Mechanical Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia

3. Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Melaka 75450, Malaysia

Abstract

Analysis of cutting forces in machining operation is an important issue. The cutting force changes randomly in milling operation where it makes a signal by plotting over time span. An important type of analysis belongs to the study of how cutting forces change along different axes. Since cutting force has fractal characteristics, in this paper for the first time we analyze the variations of complexity of cutting force signal along different axes using fractal theory. For this purpose, we consider two cutting depths and do milling operation in dry and wet machining conditions. The obtained cutting force time series was analyzed by computing the fractal dimension. The result showed that in both wet and dry machining conditions, the feed force (along [Formula: see text]-axis) has greater fractal dimension than radial force (along [Formula: see text]-axis). In addition, the radial force (along [Formula: see text]-axis) has greater fractal dimension than thrust force (along [Formula: see text]-axis). The method of analysis that was used in this research can be applied to other machining operations to study the variations of fractal structure of cutting force signal along different axes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3