Scaling Region of Weierstrass-Mandelbrot Function: Improvement Strategies for Fractal Ideality and Signal Simulation

Author:

Feng FengORCID,Zhang KexinORCID,Li Xinghui,Xia Yousheng,Yuan MengORCID,Feng PingfaORCID

Abstract

Fractal dimension (D) is widely utilized in various fields to quantify the complexity of signals and other features. However, the fractal nature is limited to a certain scope of concerned scales, i.e., scaling region, even for a theoretically fractal profile generated through the Weierstrass-Mandelbrot (W-M) function. In this study, the scaling characteristics curves of profiles were calculated by using the roughness scaling extraction (RSE) algorithm, and an interception method was proposed to locate the two ends of the scaling region, which were named corner and drop phenomena, respectively. The results indicated that two factors, sampling length and flattening order, in the RSE algorithm could influence the scaling region length significantly. Based on the scaling region interception method and the above findings, the RSE algorithm was optimized to improve the accuracy of the D calculation, and the influence of sampling length was discussed by comparing the lower critical condition of the W-M function. To improve the ideality of fractal curves generated through the W-M function, the strategy of reducing the fundamental frequency was proposed to enlarge the scaling region. Moreover, the strategy of opposite operation was also proposed to improve the consistency of generated curves with actual signals, which could be conducive to practical simulations.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Natural Science Foundation

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3