COMPLEX MATHEMATICAL MODELING FOR ADVANCED FRACTAL–FRACTIONAL DIFFERENTIAL OPERATORS WITHIN SYMMETRY

Author:

IBRAHIM RABHA W.12ORCID,OBAIYS SUZAN J.3ORCID,KARACA YELIZ4ORCID,SECER AYDIN5ORCID

Affiliation:

1. Department of Computer Science and Mathematics, Lebanese American University, 13-5053 Beirut, Lebanon

2. Department of Mathematics, Mathematics Research Center, Near East University, Near East Boulevard, PC: 99138, Nicosia/Mersin 10, Türkiye

3. Department of Computer System & Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia

4. University of Massachusetts (UMASS), Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA

5. Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Biruni University, 34010 Zeytinburnu, Istanbul, Türkiye

Abstract

Non-local operators of differentiation are bestowed with capabilities of encompassing complex natural into mathematical equations. Symmetry as invariance under a specified group of transformations can allow for the concept to be applied extensively not only to spatial figures but also to abstract objects like mathematical expressions which can be said to be expressions of physical relevance, in particular dynamical equations. Derived from this point of view, it can be noted that the more complex physical problems are, the more complex mathematical operators of differentiation are required. Accordingly, the fractal–fractional operators (FFOs) are expanded into the complex plane in our research which revolves around a unique class of normalized analytic functions in the open unit disk. To bring FFOs (differential and integral) into the normalized class, the study aims to expand and modify them along with the investigation of the FFOs geometrically. The qualities of convexity and starlikeness are implicated in this study where the differential subordination technique serves as the foundation for the inquiry under consideration. Furthermore, a collection of differential FFO inequalities is taken into account, demonstrating that the normalized Fox–Wright function can contain all FFOs. Besides these steps, the concept of Grunsky factors is applied to investigate symmetry, while boundary value issues involving FFOs are probed. Consequently, the related properties and applications can be further developed, which requires the devotion to differential fractional problems and diverse complex problems in relation to viable applications, pointing out the room to modify and upgrade the existing methods for more optimal outcomes in challenging real-world problems.

Funder

University of Malaya International Collaboration

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3