THE MULTIFRACTAL SCALING OF CLOUD RADIANCES FROM 1M TO 1KM

Author:

SACHS D.1,LOVEJOY S.1,SCHERTZER D.2

Affiliation:

1. Department of Physics, McGill University, Montreal, Canada

2. Laboratorie de Modelisation en Mechanique (L.M.M.), Centre Nationale de Recherche Scientifique (CNRS), Paris

Abstract

The cloud radiances and atmospheric dynamics are strongly nonlinearly coupled, the observed scaling of the former from 1 km to planetary scales is prima facae evidence for scale invariant dynamics. In contrast, the scaling properties of radiances at scales <1 km have not been well studied (contradictory claims have been made) and if a characteristic vertical cloud thickness existed, it could break the scaling of the horizontal radiances. In order to settle this issue, we use ground-based photography to study the cloud radiance field through the range scales where breaks in scaling have been reported (30 m to 500 m). Over the entire range 1 m to 1 km the two-dimensional (2D) energy spectrum (E(k)) of 38 clouds was found to accurately follow the scaling form E(k)≈ k where k is a wave number and β is the spectral exponent. This indirectly shows that there is no characteristic vertical cloud thickness, and that "radiative smoothing" of cloud structures occurs at all scales. We also quantitatively characterize the type of (multifractal) scaling showing that the main difference between transmitted and reflected radiance fields is the (scale-by-scale) non-conservation parameter H. These findings lend support to the unified scaling model of the atmosphere which postulates a single anisotropic scaling regime from planetary down to dissipation scales.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3