Multifractal Cascade Dynamics and Turbulent Intermittency

Author:

Schertzer D.1,Lovejoy S.2,Schmitt F.3,Chigirinskaya Y.4,Marsan D.4

Affiliation:

1. Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie, Paris, France

2. Physics Department, McGill University, Montreal, Canada

3. Institut Royal Météorologique, Brussels, Belgium

4. Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie,a Paris, France

Abstract

Turbulent intermittency plays a fundamental role in fields ranging from combustion physics and chemical engineering to meteorology. There is a rather general agreement that multifractals are being very successful at quantifying this intermittency. However, we argue that cascade processes are the appropriate and necessary physical models to achieve dynamical modeling of turbulent intermittency. We first review some recent developments and point out new directions which overcome either completely or partially the limitations of current cascade models which are static, discrete in scale, acausal, purely phenomenological and lacking in universal features. We review the debate about universality classes for multifractal processes. Using both turbulent velocity and temperature data, we show that the latter are very well fitted by the (strong) universality, and that the recent (weak, log-Poisson) alternative is untenable for both strong and weak events. Using a continuous, space-time anisotropic framework, we then show how to produce a causal stochastic model of intermittent fields and use it to study the predictability of these fields. Finally, by returning to the origins of the turbulent "shell models" and restoring a large number of degrees of freedom (the Scaling Gyroscope Cascade, SGC models) we partially close the gap between the cascades and the dynamical Navier–Stokes equations. Furthermore, we point out that beyond a close agreement between universal parameters of the different modeling approaches and the empirical estimates in turbulence, there is a rather common structure involving both a "renormalized viscosity" and a "renormalized forcing". We conclude that this gives credence to the possibility of deriving analytical/renormalized models of intermittency built on this structure.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Cited by 237 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3