COMPLEXITY AND MULTIFRACTAL OF VOLATILITY DURATION FOR AGENT-BASED FINANCIAL DYNAMICS AND REAL MARKETS

Author:

YANG GE1,WANG JUN1

Affiliation:

1. Institute of Financial Mathematics and Financial Engineering, School of Science, Beijing Jiaotong University, Beijing 100044, P. R. China

Abstract

A random agent-based financial model is developed and investigated by the finite-range multitype contact dynamic system, in an attempt to reproduce and study the dynamics of financial markets. And an analysis method of detecting duration and intensity relationship in volatility series is introduced, called the volatility duration analysis. Then the auto-correlation analysis suggests that there exists evident volatility clustering feature in absolute volatility durations for the simulation data and the real data. Besides, the Lempel–Ziv complexity analysis is applied to study the complexity of the returns, the corresponding absolute returns and the volatility duration returns, which can reflect the fluctuation behaviors, the volatility behaviors and the volatility duration behaviors. At last, the multifractal phenomena of volatility durations of returns are comparatively studied for Shanghai Composite Index and the proposed model by multifractal detrended fluctuation analysis.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3