STATISTICAL ANALYSIS BY WAVELET LEADERS REVEALS DIFFERENCES IN MULTI-FRACTAL CHARACTERISTICS OF STOCK PRICE AND RETURN SERIES IN TURKISH HIGH FREQUENCY DATA

Author:

LAHMIRI SALIM12ORCID,SENSOY AHMET34ORCID,AKYILDIRIM ERDINC5ORCID,BEKIROS STELIOS6ORCID

Affiliation:

1. Department of Supply Chain and Business, Technology Management, John Molson School of Business, Concordia University, Montreal, Canada

2. Chaire Innovation et Économie Numérique, ESCA École de Management, Casablanca, Morocco

3. Faculty of Business Administration, Bilkent University, Ankara, Turkey

4. Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon

5. School of Management, University of Bradford, Bradford, United Kingdom, Department of Management, Bogazici University, Istanbul, Turkey

6. FEMA, University of Malta, MSD 2080 Msida, Malta, LSE Health, London School of Economics and Political Science (LSE), London WC2A2AE, UK

Abstract

The price and return time series are two distinct features of any financial asset. Hence, examining the evolution of multiscale characteristics of price and returns sequential data in time domain would be helpful in gaining a better understanding of the dynamical evolution mechanism of the financial asset as a complex system. In fact, this is important to understand their respective dynamics and to design their appropriate predictive models. The main purpose of the current work is to investigate the multiscale fractals of price and return high frequency data in Turkish stock market. In this regard, the wavelet leaders computational method is applied to each high frequency data to reveal its multi-fractal behavior. In particular, the method is applied to a large set of Turkish stocks and statistical results are performed to check for (i) presence of multi-fractals in price and return series and (ii) differences between prices and returns in terms of multi-fractals. Our statistical results show strong evidence that high frequency price and return data exhibit multi-fractal dynamics. In addition, they show evidence of distinct fractal characteristics on different scales between price and return series. Furthermore, our statistical results show evidence of differences in local fluctuation characteristics of price and return time series. Therefore, differences in local characteristics are useful to build specific predictive models for each type of data for better modeling and prediction to generate profits. Besides, we found evidence that both long-range correlations and fat-tail distributions contribute to the multifractality in Turkish stocks. This finding can be attributed to the major role played by international investors in increasing the volatility of Turkish stocks.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3