ENERGY ABSORPTION IN A LOAD–UNLOAD CYCLE OF KNEE IMPLANT USING FRACTAL MODEL OF ROUGH SURFACES

Author:

HODAEI MOHAMMAD1,FARHANG KAMBIZ1

Affiliation:

1. Department of Mechanical Engineering and Energy Processes, Southern Illinois University, Engineering Building, Mail Code 6603, Carbondale, IL 62901, USA

Abstract

Roughness measurement of knee implant surfaces is investigated. The study of roughness measurement show that the topography of knee implant surface is multi-scale and surface spectra follows a power law behavior. A magnification of rough surface topography implies that there is no difference between original and magnified profile of implant surface. For implant surface, statistical parameters such as variance of height, curvature, and slope are found to be scale-dependent. Fractal representation of implant surface shows that the size-distribution of the multi-scale contacts spots follows a power law and is characterized by the fractal dimension of implant surface. Fractal surface description of the rough surfaces of knee implant is used to obtain force–displacement relationship of the contact force. Using an approximate function through the fusion of two piecewise functions, energy absorption of a knee implant in a single cycle of load–unload is obtained.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractal contact resistance model of wind pitch slip ring considering wear and self-excited vibration;Industrial Lubrication and Tribology;2024-01-18

2. Plastic Energy Dissipation in Lumbar Spine Implants: A Contact Mechanics Point of View;Journal of Engineering and Science in Medical Diagnostics and Therapy;2019-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3