Affiliation:
1. Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Abstract
The Greenwood and Williamson (GW) statistical approach of characterizing rough surfaces is extended to include asymmetric distribution of asperity heights using the Weibull distribution. A key parameter that is used to characterize asymmetry is the skewness, and the corresponding Weibull parameters are investigated for a range of practical skewness values. The Weibull distribution is then adopted to model the asperity heights, and once normalized, is used to calculate the contact load, real area of contact and number of contacting asperities using the CEB elastic-plastic model of an equivalent rough surface in contact with a smooth plane. The effect of skewness on different levels of surface roughness, ranging from very smooth surfaces encountered in microtribological applications to rougher surfaces encountered in macrotribological applications is investigated, and also compared to the symmetric Gaussian case. Also, to allow for closed-form solution of the contact equations, simpler exponential distributions are curved-fitted to the contact side of the Weibull distribution, and the analytical results are favorably compared with the numerical results using the Weibull distribution.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
118 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献