EMPIRICAL EVALUATION OF CLASSIFIERS FOR SOFTWARE RISK MANAGEMENT

Author:

PENG YI1,KOU GANG1,WANG GUOXUN1,WANG HONGGANG2,KO FRANZ I. S.3

Affiliation:

1. School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China

2. Department of Electrical and Computer Engineering, University of Massachusetts, Dartmouth, USA

3. Department of Computer and Multimedia, Dongguk University, Korea

Abstract

Software development involves plenty of risks, and errors exist in software modules represent a major kind of risk. Software defect prediction techniques and tools that identify software errors play a crucial role in software risk management. Among software defect prediction techniques, classification is a commonly used approach. Various types of classifiers have been applied to software defect prediction in recent years. How to select an adequate classifier (or set of classifiers) to identify error prone software modules is an important task for software development organizations. There are many different measures for classifiers and each measure is intended for assessing different aspect of a classifier. This paper developed a performance metric that combines various measures to evaluate the quality of classifiers for software defect prediction. The performance metric is analyzed experimentally using 13 classifiers on 11 public domain software defect datasets. The results of the experiment indicate that support vector machines (SVM), C4.5 algorithm, and K-nearest-neighbor algorithm ranked the top three classifiers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3