A soft computing approach for software defect density prediction

Author:

Azzeh Mohammad1ORCID,Alqasrawi Yousef2,Elsheikh Yousef2

Affiliation:

1. Department of Data Science Princess Sumaya University for Technology Amman Jordan

2. Faculty of Information Technology Applied Science Private University Amman Jordan

Abstract

AbstractDefect density is an essential software testing and maintenance aspect that determines the quality of software products. It is used as a management factor to distribute limited human resources successfully. The availability of public defect datasets facilitates building defect density prediction models using established static code metrics. Since the data gathered for software modules are often subject to uncertainty, it becomes difficult to deliver accurate and reliable predictions. To alleviate this issue, we propose a new prediction model that integrates gray system theory and fuzzy logic to handle the imprecision in software measurement. We propose a new similarity measure that combines the benefits of fuzzy logic and gray relational analysis. The proposed model was validated against defect density prediction models using public defect datasets. The defect density variable is frequently sparse because of the vast number of none‐defected modules in the datasets. Therefore, we also check our proposed model's performance against the sparsity level. The findings reveal that the developed model surpasses other defect density prediction models over the datasets with high and very high sparsity ratios. The ensemble learning techniques are competitive choices to the proposed model when the sparsity ratio is relatively small. On the other hand, the statistical regression models were the most inadequate methods for such problems and datasets. Finally, the proposed model was evaluated against different degrees of uncertainty using a sensitivity analysis procedure. The results showed that our model behaves stably under different degrees of uncertainty.

Funder

Applied Science Private University

Publisher

Wiley

Subject

Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Empirical Study on Just-in-time Conformal Defect Prediction;Proceedings of the 21st International Conference on Mining Software Repositories;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3