A NOVEL FIVE-CATEGORY LOAN-RISK EVALUATION MODEL USING MULTICLASS LS-SVM BY PSO

Author:

CAO JIE1,LU HONGKE2,WANG WEIWEI1,WANG JIAN3

Affiliation:

1. School of Economics and Management, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. School of Economics & Management, Southeast University, Nanjing 210096, China

3. Jiangsu Jinnong Information Co., Ltd., Nanjing 210019, China

Abstract

Five-category loan classification (FCLC) is an international financial regulation approach. Recently, the application and implementation of FCLC in the Chinese microfinance bank has mostly relied on subjective judgment, and it is difficult to control and lower loan risk. In view of this, this paper is dedicated to researching and solving this problem by constructing the FCLC model based on improved particle-swarm optimization (PSO) and the multiclass, least-square, support-vector machine (LS-SVM). First, LS-SVM is the extension of SVM, which is proposed to achieve multiclass classification. Then, improved PSO is employed to determine the parameters of multiclass LS-SVM for improving classification accuracy. Finally, some experiments are carried out based on rural credit cooperative data to demonstrate the performance of our proposed model. The results show that the proposed model makes a distinct improvement in the accuracy rate compared with one-vs.-one (1-v-1) LS-SVM, one-vs.-rest (1-v-r) LS-SVM, 1-v-1 SVM, and 1-v-r SVM. In addition, it is an effective tool in solving the problem of loan-risk rating.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3