Affiliation:
1. School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun, China
2. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
Abstract
Recently, support vector machines, a supervised learning algorithm, have been widely used in the scope of credit risk management. However, noise may increase the complexity of the algorithm building and destroy the performance of classifier. In our work, we propose an ensemble support vector machine model to solve the risk assessment of supply chain finance, combined with reducing noises method. The main characteristics of this approach include that (1) a novel noise filtering scheme that avoids the noisy examples based on fuzzy clustering and principal component analysis algorithm is proposed to remove both attribute noise and class noise to achieve an optimal clean set, and (2) support vector machine classifiers, based on the improved particle swarm optimization algorithm, are seen as component classifiers. Then, we obtained the final classification results by combining finally individual prediction through AdaBoosting algorithm on the new sample set. Some experiments are applied on supply chain financial analysis of China’s listed companies. Results indicate that the credit assessment accuracy can be increased by applying this approach.
Funder
National Natural Science Foundation of China
Foundation of Jilin Provincial Science & Technology Department
Society Science Foundation of Jilin Province
Subject
Computer Networks and Communications,General Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献