Semi-supervised discriminant analysis method for face recognition

Author:

Chen Wen-Sheng1,Dai Xiuli1,Pan Binbin1,Tang Yuan Yan2

Affiliation:

1. College of Mathematics and Statistics, Shenzhen Key Laboratory of Media Security, Research Center of Intelligent Analysis and Processing for HD Video, Shenzhen University, Shenzhen 518060, P. R. China

2. Department of Computer and Information Science, University of Macau, Macau, P. R. China

Abstract

In face recognition (FR), a lot of algorithms just utilize one single type of facial features namely global feature or local feature, and cannot obtain better performance under the complicated variations of the facial images. To extract robust facial features, this paper proposes a novel Semi-Supervised Discriminant Analysis (SSDA) criterion via nonlinearly combining the global feature and local feature. To further enhance the discriminant power of SSDA features, the geometric distribution weight information of the training data is also incorporated into the proposed criterion. We use SSDA criterion to design an iterative algorithm which can determine the combination parameters and the optimal projection matrix automatically. Moreover, the combination parameters are guaranteed to fall into the interval [0, 1]. The proposed SSDA method is evaluated on the ORL, FERET and CMU PIE face databases. The experimental results demonstrate that our method achieves superior performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Triangle and orthogonal local binary pattern for face recognition;Multimedia Tools and Applications;2023-03-16

2. Navigation Safety Monitoring System of Ship Bridge Area Based on Convolution Neural Network;2021 3rd International Conference on Applied Machine Learning (ICAML);2021-07

3. Data Science in Face Recognition System Based on BP Neural Network;Journal of Physics: Conference Series;2021-04-01

4. Chaos Glowworm Swarm Optimization Algorithm Based on Cloud Model for Face Recognition;International Journal of Pattern Recognition and Artificial Intelligence;2020-03-25

5. Semi-supervised partial least squares;International Journal of Wavelets, Multiresolution and Information Processing;2020-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3