A NEW REGULARIZED LINEAR DISCRIMINANT ANALYSIS METHOD TO SOLVE SMALL SAMPLE SIZE PROBLEMS

Author:

CHEN WEN-SHENG1,YUEN PONG C.2,HUANG JIAN34

Affiliation:

1. College of Science, Shenzhen University, Shenzhen 518060, P. R. China

2. Key Laboratory of Mathematics Mechanization, CAS, Beijing 100080, P. R. China

3. Department of Computer Science, Hong Kong Baptist University, Hong Kong, P. R. China

4. Department of Computer Science, Zhongshan (Sun Yat-Sen) University, Guangzhou, P. R. China

Abstract

This paper presents a new regularization technique to deal with the small sample size (S3) problem in linear discriminant analysis (LDA) based face recognition. Regularization on the within-class scatter matrix Sw has been shown to be a good direction for solving the S3 problem because the solution is found in full space instead of a subspace. The main limitation in regularization is that a very high computation is required to determine the optimal parameters. In view of this limitation, this paper re-defines the three-parameter regularization on the within-class scatter matrix [Formula: see text], which is suitable for parameter reduction. Based on the new definition of [Formula: see text], we derive a single parameter (t) explicit expression formula for determining the three parameters and develop a one-parameter regularization on the within-class scatter matrix. A simple and efficient method is developed to determine the value of t. It is also proven that the new regularized within-class scatter matrix [Formula: see text] approaches the original within-class scatter matrix Sw as the single parameter tends to zero. A novel one-parameter regularization linear discriminant analysis (1PRLDA) algorithm is then developed. The proposed 1PRLDA method for face recognition has been evaluated with two public available databases, namely ORL and FERET databases. The average recognition accuracies of 50 runs for ORL and FERET databases are 96.65% and 94.00%, respectively. Comparing with existing LDA-based methods in solving the S3 problem, the proposed 1PRLDA method gives the best performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cost-sensitive regression learning on small dataset through intra-cluster product favoured feature selection;Connection Science;2021-08-30

2. Discriminant Analysis;Neural Networks and Statistical Learning;2019

3. Sparsity analysis versus sparse representation classifier;Neurocomputing;2016-01

4. Semi-supervised discriminant analysis method for face recognition;International Journal of Wavelets, Multiresolution and Information Processing;2015-11

5. Discriminant Analysis;Neural Networks and Statistical Learning;2013-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3