ERROR ANALYSIS FOR THE SPARSE GRAPH-BASED SEMI-SUPERVISED CLASSIFICATION ALGORITHM

Author:

ZUO LING12,PENG JIANGTAO1,ZOU BIN1

Affiliation:

1. Faculty of Mathematics and Computer Science, Hubei University, Wuhan 430062, P. R. China

2. School of Science, Hubei University of Technology, Wuhan 430068, P. R. China

Abstract

Recently, semi-supervised learning (SSL) has attracted significant attention in machine learning fields. While numerous experimental results have shown the effectiveness of SSL methods, the theoretical analysis in this area is still poorly understood. In this paper, we investigate the generalization performance of the recently proposed sparse graph-based semi-supervised classification algorithm. We use a computationally more simple way to solve the algorithm and present the excess misclassification error bounds. In detail, the Fenchel-Legendre conjugate is first employed to reform the algorithm to an inf-sup problem. Then, the covering number is used to estimate the excess misclassification error. Experiment results are given to demonstrate the effectiveness of the sparse SSL algorithm with new solving strategy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The performance of semi-supervised Laplacian regularized regression with the least square loss;International Journal of Wavelets, Multiresolution and Information Processing;2017-02-07

2. Learning by atomic norm regularization with polynomial kernels;International Journal of Wavelets, Multiresolution and Information Processing;2015-09

3. Convergence rate of semi-supervised gradient learning algorithms;International Journal of Wavelets, Multiresolution and Information Processing;2015-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3