Convergence rate of semi-supervised gradient learning algorithms

Author:

Sheng Baohuai1,Xiang Daohong2,Ye Peixin3

Affiliation:

1. Department of Mathematics, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China

2. Department of Mathematics, Zhejiang Normal University, Jinhua 312004, P. R. China

3. School of Mathematics and LPMC, Nankai University, Tianjin 312000, P. R. China

Abstract

Semi-supervised learning deals with learning with a small amount labeled sample and a large amount of unlabeled sample to improve the learning ability. The purpose of the semi-supervised gradient learning is to increase the smoothness of the solution using unlabeled gradient data. In this paper, we study the semi-supervised kernel-based regularization scheme involving function gradient value. We show that the learning rate can be bounded by a K-functional with gradients of the function, which verify how the unlabeled gradient data quantitatively influences the learning rate. Some approaches from convex analysis play a key role in our error analysis.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solving Neumann Boundary Problem with Kernel-Regularized Learning Approach;Journal of Applied Mathematics and Physics;2024

2. The kernel regularized learning algorithm for solving Laplace equation with Dirichlet boundary;International Journal of Wavelets, Multiresolution and Information Processing;2022-09-05

3. Apple leaf disease recognition method with improved residual network;Multimedia Tools and Applications;2022-01-28

4. Performance analysis of the LapRSSLG algorithm in learning theory;Analysis and Applications;2019-12-16

5. Convergence rate of SVM for kernel-based robust regression;International Journal of Wavelets, Multiresolution and Information Processing;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3