EMD fractal feature extraction technique in fingerprint of medicinal herbs

Author:

Du Jianwei12,Xu Zhengguang1,Mu Zhichun1,Tang Yuan Yan3,Cui Limin2,Duan Tianxuan4

Affiliation:

1. School of Automation and Electrical Engineering, University of Sciences and Technology Beijing, Beijing, P. R. China

2. Department of Mathematics and Physics, Institute of Petrochemical Technology, Beijing, P. R. China

3. Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau

4. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China

Abstract

This paper proposes the fractal features for glycyrrhiza fingerprint of medicinal herbs, to obtain the intrinsic mode functions (IMFs) from high to low frequency by using empirical mode decomposition (EMD). The EMD fractal features are extracted through computing the fractal dimensions of each IMF. The novel approach is applied to the recognition of the three types of glycyrrhiza fingerprints. Experiments show that EMD fractal features have better recognition rate than that of the traditional ones in the case of concentration-change, i.e. the number of peak and peak drift of sample which has slight changes. An existing method to extract the fractal features for fingerprint of medicinal herbs based on wavelet transform, which is called fractal-wavelet features, was presented. This method has anti-jamming property against the change of samples concentration. However, the recognition rate based on fractal-wavelet features is not satisfactory when fingerprint of medicinal herbs has some slight concentrations changes, the number of peak and peak drift of samples are processed in the special situation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empirical Mode Decomposition — Window Fractal (EMDWF) Algorithm in Classification of Fingerprint of Medicinal Herbs;International Journal of Pattern Recognition and Artificial Intelligence;2017-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3