Empirical Mode Decomposition — Window Fractal (EMDWF) Algorithm in Classification of Fingerprint of Medicinal Herbs

Author:

Du Jianwei12,Xu Zhengguang1,Mu Zhichun1,Wang Patrick Shen-Pei3,Tang Yuan Yan4,Luo Huiwu4ORCID

Affiliation:

1. School of Automation and Electrical Engineering, University of Sciences & Technology Beijing, Beijing 100083, P. R. China

2. Department of Mathematics and Physics, Institute of Petrochemical Technology, Beijing 100083, P. R. China

3. Northeastern University, Boston, MA 02115, USA

4. Faculty of Science and Technology, University of Macau, Macau 999078, P. R. China

Abstract

This paper presents a new approach called the empirical mode decomposition — window fractal (EMDWF) algorithm in classification of fingerprint of medicinal herbs. In this way, we consider a glycyrrhiza fingerprint of medicinal herb as a signal sequence, and apply empirical mode decomposition (EMD) and Hiaguchis fractal dimension to construct a feature vector. By using EMD, the glycyrrhiza fingerprint of medicinal herb can be decomposed into some intrinsic mode functions (IMFs). As window fractal dimension (WFD) is applied to each IMF and original signal, the features of the glycyrrhiza fingerprint of medicinal herb can be obtained. Thereafter, SVM is applied as a classifier. The results of the experiments state clearly that the feature extracted by EMDWF is better than that of the existing methods including the pure EMD. With the increase of the number of training samples and the increase of the number of layers in EMD, the classification result achieves more stability.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bidirectional EMD-RLS: Performance analysis for denoising in speech signal;Journal of Computational Science;2023-12

2. A survey on Hilbert-Huang transform: Evolution, challenges and solutions;Digital Signal Processing;2022-01

3. A Bearing Fault Diagnosis Method Based on VMD-SVD and Fuzzy Clustering;International Journal of Pattern Recognition and Artificial Intelligence;2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3