Optimized deep stacked autoencoder for ransomware detection using blockchain network

Author:

Nalinipriya G.1,Maram Balajee2,Vidyadhari Ch.3,Cristin R.2

Affiliation:

1. Department of Information Technology, Saveetha Engineering College, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu 602105, India

2. Department of Computer Science and Engineering, GMR Institute of Technology, GMR Nagar, Rajam, Andhra Pradesh 532127, India

3. Department of Information Technology, Gokaraju Rangaraju Institute of Engineering and Technology, Bachupally, Kukatpally, Hyderabad, Telangana 500090, India

Abstract

The innovation of technologies has become ubiquitous and imperative in day-to-day lives. Malware is the major threat to the network, and Ransomware is a special and harmful type of malware. Ransomware led to huge data losses and induced huge economic costs. Moreover, Ransomware detection is a crucial task to minimize analyst’s workloads. This paper devises a novel deep learning method for detecting Ransomware using the blockchain network. Here, the sequence-based statistical feature extraction is performed, wherein the features are extracted using 2-gram and 3-gram opcodes. Also, the term frequency-inverse document frequency (TF-IDF) is discovered for each feature. Then the Box-Cox transformation is applied to transformation to the data for improved analysis. Also, the feature fusion is progressed using a fractional concept. Finally, the classification of Ransomware is done using Deep stacked Auto-encoder (Deep SAE), wherein the proposed Water wave-based Moth Flame optimization (WMFO) is adapted for generating the optimal weights. The WMFO is designed by integrating Water wave optimization (WWO) and Moth Flame optimization (MFO). The proposed WMFO-Deep SAE outperformed other methods with maximal accuracy of 96.925%, sensitivity of 96.900%, and specificity of 97.920%.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Band guard- a dynamic security tool for women protection using data analysis;2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2022-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3