Affiliation:
1. Department of Information Technology, SNJB’s College of Engineering, Neminagar, Chandwad, Nashik, Maharashtra 423101, India
2. Department of Computer Engineering, S V National Institute of Technology, Surat, Gujarat 395007, India
Abstract
In privacy preserving data mining, the l-diversity and k-anonymity models are the most widely used for preserving the sensitive private information of an individual. Out of these two, l-diversity model gives better privacy and lesser information loss as compared to the k-anonymity model. In addition, we observe that numerous clustering algorithms have been proposed in data mining, namely, k-means, PSO, ACO, and BFO. Amongst them, the BFO algorithm is more stable and faster as compared to all others except k-means. However, BFO algorithm suffers from poor convergence behavior as compared to other optimization algorithms. We also observed that the current literature lacks any approaches that apply BFO with l-diversity model to realize privacy preservation in data mining. Motivated by this observation, we propose here an approach that uses fractional calculus (FC) in the chemotaxis step of the BFO algorithm. The FC is used to boost the computational performance of the algorithm. We also evaluate our proposed FC-BFO and BFO algorithms empirically, focusing on information loss and execution time as vital metrics. The experimental evaluation shows that our proposed FC-BFO algorithm derives an optimal cluster as compared to the original BFO algorithm and existing clustering algorithms.
Cited by
116 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献