Affiliation:
1. School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Abstract
Consider a data holder, such as a hospital or a bank, that has a privately held collection of person-specific, field structured data. Suppose the data holder wants to share a version of the data with researchers. How can a data holder release a version of its private data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data remain practically useful? The solution provided in this paper includes a formal protection model named k-anonymity and a set of accompanying policies for deployment. A release provides k-anonymity protection if the information for each person contained in the release cannot be distinguished from at least k-1 individuals whose information also appears in the release. This paper also examines re-identification attacks that can be realized on releases that adhere to k-anonymity unless accompanying policies are respected. The k-anonymity protection model is important because it forms the basis on which the real-world systems known as Datafly, μ-Argus and k-Similar provide guarantees of privacy protection.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Information Systems,Control and Systems Engineering,Software
Cited by
5120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献