Novel feature of doubly bubble nuclei in 50 ≤ Z(N) ≤ 82 region along with magicity and weakly bound structure

Author:

Kumawat M.1,Saxena G.2ORCID,Kaushik M.3,Jain S. K.1,Deegwal J. K.4,Aggarwal Mamta5

Affiliation:

1. Department of Physics, School of Basic Sciences, Manipal University Jaipur, Jaipur 303007, India

2. Department of Physics (H & S), Government Women Engineering College, Ajmer 305002, India

3. S. S. Jain Subodh P. G. College, M. C. A. Institute, Rambagh Circle, Jaipur 302004, India

4. Government Women Engineering College, Ajmer 305002, India

5. Department of Physics, University of Mumbai, Kalina Campus, Mumbai 400098, India

Abstract

In this work, we identify a unique and novel feature of central density depletion in both proton and neutron named as doubly bubble nuclei in [Formula: see text] region. The major role of 2d-3s single-particle (s.p.) states in the existence of halo and bubble nuclei is probed. The occupancy in s.p. state 3s[Formula: see text] leads to the extended neutron density distribution or halo while the unoccupancy results in the central density depletion. By employing the Relativistic Mean-Field (RMF) approach along with NL3* parameter, the separation energies, s.p. energies, pairing energies, proton and neutron density profiles along with deformations of even–even nuclei are investigated. Our results are concise with few other theories and available experimental data. Emergence on new shell closure and the magicity of conventional shell closures are explored systematically in this yet unknown region.

Funder

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3