Structural properties of nuclei with semi-magic number N(Z) = 40

Author:

Sharma R.12,Jain A.13,Kaushik M.4,Jain S. K.1,Saxena G.3ORCID

Affiliation:

1. Department of Physics, School of Basic Sciences, Manipal University Jaipur, Jaipur 303007, India

2. Department of Physics, S. S. Jain Subodh P. G. (Autonomous) College, Jaipur 302004, India

3. Department of Physics (H & S), Government Women Engineering College, Ajmer 305002, India

4. M. C. A. Institute, S. S. Jain Subodh P. G. College, Rambagh Circle, Jaipur 302004, India

Abstract

In this paper, various ground state properties are explored for full isotonic(isotopic) chain of neutron number N [Formula: see text]proton number [Formula: see text] using different families of Relativistic Mean-Field theory. Several properties, such as nucleon separation energies, pairing energies, deformation, radii and nucleon density distributions, are evaluated and compared with the experimental data as well as those from other microscopic and macroscopic models. [Formula: see text] isotonic chain presents ample of support for the neutron magicity and articulates double magicity in recently discovered [Formula: see text]Ca and [Formula: see text]Ni. Our results are in close conformity with the recently measured value of charge radius of [Formula: see text]Ni [S. Kaufmann et al., Phys. Rev. Lett. 124 (2020) 132502] which supports the [Formula: see text] magicity. Contrarily, Zr isotopes ([Formula: see text]) display variety of shapes leading to the phenomenon of shape transitions and shape co-existence. The role of 3s[Formula: see text] state, which leads to central depletion if unoccupied, is also investigated. [Formula: see text]S and [Formula: see text]Zr are found to be doubly bubble nuclei.

Funder

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3