Affiliation:
1. Department of Physics, University of South Africa, P. O. Box 392, Pretoria 0003, South Africa
Abstract
We have performed a detailed partial-wave analysis in order to analyze each partial-wave contribution to the breakup cross-sections as well as multipole interference effects in the [Formula: see text] breakup reaction. The results show that [Formula: see text]-waves contribute up to 67.03% of the overall integrated total breakup cross-section, distributed as follows: 10.43% for the [Formula: see text] partial-wave, 21.94% for the [Formula: see text] partial-wave and 34.66% for the [Formula: see text] partial-wave. A similar trend is observed for both Coulomb and nuclear breakup cross-sections. The importance of [Formula: see text]-waves over the non-[Formula: see text]-waves in the breakup process is mainly due to the higher-order multipole interferences. It is also obtained that the combination of [Formula: see text]-waves and [Formula: see text]-waves accounts for 84.77%, 89.95% and 73.58% of the total, Coulomb and nuclear breakup cross-sections, respectively. Considering the results obtained for the [Formula: see text] and [Formula: see text] partial-waves, we conclude that the [Formula: see text] and [Formula: see text] resonant breakup cross-sections, which can be obtained by integrating over the resonant energy range, could not be negligible compare to the [Formula: see text] resonant breakup cross-section. As far as this reaction is concerned, we can conclude that in the sequential breakup of [Formula: see text], excitations to all its three resonant states should be considered for a fair description of such process.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献