Partial-wave analysis and multipole transition interferences in the breakup of 6Li on 152Sm target

Author:

Mukeru B.1,Lekala M. L.1

Affiliation:

1. Department of Physics, University of South Africa, P. O. Box 392, Pretoria 0003, South Africa

Abstract

We have performed a detailed partial-wave analysis in order to analyze each partial-wave contribution to the breakup cross-sections as well as multipole interference effects in the [Formula: see text] breakup reaction. The results show that [Formula: see text]-waves contribute up to 67.03% of the overall integrated total breakup cross-section, distributed as follows: 10.43% for the [Formula: see text] partial-wave, 21.94% for the [Formula: see text] partial-wave and 34.66% for the [Formula: see text] partial-wave. A similar trend is observed for both Coulomb and nuclear breakup cross-sections. The importance of [Formula: see text]-waves over the non-[Formula: see text]-waves in the breakup process is mainly due to the higher-order multipole interferences. It is also obtained that the combination of [Formula: see text]-waves and [Formula: see text]-waves accounts for 84.77%, 89.95% and 73.58% of the total, Coulomb and nuclear breakup cross-sections, respectively. Considering the results obtained for the [Formula: see text] and [Formula: see text] partial-waves, we conclude that the [Formula: see text] and [Formula: see text] resonant breakup cross-sections, which can be obtained by integrating over the resonant energy range, could not be negligible compare to the [Formula: see text] resonant breakup cross-section. As far as this reaction is concerned, we can conclude that in the sequential breakup of [Formula: see text], excitations to all its three resonant states should be considered for a fair description of such process.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3