Organic nanomaterials from self-assembly of BODIPY-benzothiadiazole conjugate for PDT/PTT synergistic therapy

Author:

Sha Qilong1,Deng Jingran1,Zhang Huishuang1,Luo Xiaogang12,Wu Fengshou1

Affiliation:

1. Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, P. R. China

2. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China

Abstract

Near-infrared light-induced phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a new noninvasive method for cancer treatment owing to the nature of high efficiency and spatiotemporal selectivity. In this study, a new boron-dipyrromethene (BODIPY) molecule (BDP-BT) with donor (D)-receptor (A)-donor (D) structure was designed and successfully synthesized by conjugation of benzothiadiazole (BT) with BODIPY structure. The polyethylene glycol chain (PEG) was modified onto the meso site of BODIPY to improve the hydrophilicity and biocompatibility of the compound. The amphiphilic BDP-BT was then self-assembled into nanoparticles (BDP-BT NPs) with red-shifted absorption and enhanced hydrophilicity. BDP-BT NPs can produce effective reactive oxygen species and local hyperthermia triggered by a single laser. The in vitro experiments revealed that BDP-BT NPs had good biocompatibility and remarkable photocytoxicity. The half maximal inhibitory concentration (IC[Formula: see text] of BDP-BT NPs was valued at 22.17 [Formula: see text]g/mL under 635 nm laser irradiation. Furthermore, BDP-BT NPs can efficiently generate reactive oxygen species (ROS) in the tumor cells under light irradiation. Thus, the as-prepared BDP-BT NPs could be used as promising agents for PDT and PTT synergistic cancer therapy.

Funder

Natural Science Foundation of Hubei Province

Outstanding Young and Middle-aged Scientific Innovation Team

Innovation Project of Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3