Galactosyl, alkyl, and acidic groups modify uptake and subcellular deposition of pyropheophorbide-a by epithelial tumor cells and determine photosensitizing efficacy

Author:

Tracy Erin C.1,Joshi Penny2,Dukh Mykhaylo2,Durrani Farukh A.2,Pandey Ravindra K.2,Baumann Heinz1

Affiliation:

1. Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA

2. Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA

Abstract

Photosensitizers currently used for photodynamic therapy of cancer show enhanced accumulation in tumor tissue but lack cancer cell specificity. To augment cellular uptake, the targeting of pyropheophorbide-a to carbohydrate-binding components of cancer cells was explored. Galactose was attached to pyropheophorbide-a at positions 172 and 20. Since the modification at position 172 removed a carboxylic group, which is relevant for cell specificity, this study evaluated the relative contribution of galactosyl and carboxyl groups at either position 172 or 20, with or without a (hexyloxy)ethyl at position 3, to cellular uptake by human epithelial cancer cells. The subcellular deposition was monitored using fluorescence microscopy and the photoreaction was quantified using biomarkers. The results demonstrated that any galactose addition suppresses transmembrane diffusion and promotes endocytosis and lysosomal accumulation. An anionic group at position 172 or 20 enhances lysosomal retention. Neutralization of the carboxylic group at position 172 facilitates transfer to mitochondria/endoplasmatic reticulum and promotes tumor cell-specific retention. Replacing (hexyloxy)ethyl with an ethyl group at position 3 increased both cellular uptake and egress but did not alter subcellular localization. These findings suggest that specific neutral galactosylated pheophorbides may provide an enhanced therapeutic effect for those tumor types that do not retain unmodified pyropheophorbide. However, the galactose conjugates also serve as substrates for preferential uptake by liver cells resulting in hepatic sequestration, reduced systemic distribution, and lower accumulation in tumor tissue.

Funder

HB and RP were supported by NCI

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3