β-Nitro-substituted free-base, iron(III) and manganese(III) tetraarylporphyrins: synthesis, electrochemistry and effect of the NO2 substituent on spectra and redox potentials in non-aqueous media

Author:

Yang Shuibo1,Sun Bin1,Ou Zhongping1,Meng Deying1,Lu Guifen1,Fang Yuanyuan2,Kadish Karl M.2

Affiliation:

1. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

2. Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA

Abstract

Two free-base and four metal derivatives of substituted tetraarylporphyrins containing a nitro-substituent on the β-pyrrole position of the macrocycle were synthesized and characterized by UV-vis, FTIR, 1 H NMR and mass spectrometry as well as electrochemistry and spectroelectrochemistry in non-aqueous media. The porphyrins are represented as ( NO 2 TmPP ) M and ( NO 2 TdmPP ) M , where M = 2 H , Fe III Cl or Mn III Cl , m is a CH 3 group on the para-position of the four meso-phenyl rings of the tetraphenylporphyrin (TPP) and dm represents two OCH 3 substituents on the meta-positions of each phenyl ring of the TPP macrocycle. UV-visible spectra of the nitro-substituted porphyrins exhibit absorption bands which are red-shifted by 4–11 nm as compared to bands of the same substituted tetraarylporphyrins lacking a nitro substituent. Three or four reductions are observed for each iron and manganese nitroporphyrin, the first of which is metal-centered, leading to formation of an Fe ( II ) or Mn ( II ) complex. Further reduction at the metal center occurs for the iron porphyrins but this reaction proceeds via an Fe ( II ) π anion radical in the case of the two nitro-substituented derivatives. The β-nitro-substituted porphyrins are easier to reduce and harder to oxidize than the corresponding compounds lacking a nitro group. The effect of NO 2 substituent on reduction/oxidation potentials and the site of electron transfer was also discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3