Affiliation:
1. College of Mechanical Engineering, Donghua University, Shanghai, P. R. China
2. Mechanical and Electrical Engineering Institute, Zhengzhou University of Light Industry, Henan, P. R. China
Abstract
The decoupled methods for reliability-based design optimization (RBDO) problems are efficient and accurate. Sequential optimization and reliability analysis (SORA) method and probabilistic feasible region (PFR) approach are typical decoupled methods. When there are multiple constraints in RBDO problem, PFR method improves the efficiency of solving this problem by establishing the PFR to reduce the number of unnecessary reliability analysis loops. If the constraint boundary is not fixed in RBDO problem, PFR method may fail to solve and give the wrong result. Based on PFR method, this paper proposed an improvement of PFR method to solve the unfixed constraint boundary problems. The improvement of PFR method may not be efficient as the PFR method in solving the common RBDO problems. But, the improvement of PFR method can solve the RBDO problem with unfixed constraint boundary and has better adaptability. Three applications, a nonlinear mathematical problem, a highly nonlinear mathematical problem and an engineering design problem, are presented to illustrate the accuracy of the improvement of PFR method.
Funder
Fundamental Research Funds for the Central Universities
China Postdoctoral Science Foundation
Natural Science Foundation of Shanghai
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Mathematics,Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献